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Abstract—The aerial parts of Stevia ovata afforded three sesquiterpene lactones, of which one was new. Its structure
was established by spectroscopic methods and chemical reactions. One of the compounds, 4«,58-epoxy-8-epi-inunolide
was chemically correlated with 11,13-dehydroeriolin. The structure of the latter was confirmed by single crystal X-ray

diffraction. The conformation of 11,13-dehydroeriolin in the solid is chair—chair ['3Ds, ,D'4].

INTRODUCTION

The genus Stevia (tribe Eupatorieae, subtribe Piqueriinae)
[1] with about 150-200 species is abundant in Mexico [2].
So far phytochemical investigations have shown that this
genus is chemically heterogeneous [3].

As part of our chemical systematic study of the tribe
Eupatorieae, we have previously analysed Stevia monar-
daefolia [4, 5] and Stevia rhombifolia H.B.K. [6], which
according to Grashoff [7] is synonymous with Stevia
ovata Willd. Previous studies on this species afforded the
paniculosides I-V [8], a longipinene derivative [9] and
two bisabolene derivatives [10]. We now report the
isolation and structure elucidation of the new sesquiter-
pene lactone 4-acetyl-8-epi-inuviscolide (1) and the
known lactones 4, SpB-epoxy-8-epi-inunolide (5) and
inuviscolide (7) [11].

RESULTS AND DISCUSSION

4-Acetyl-8-epi-inuviscolide (1) had the molecular for-
mula C,,H,;,0, and was shown to be a sesquiterpene
lactone of the guaianolide type. IR absorptions at
1730cm ™! indicate the presence of an acetate group
(m/z 230 due to [M —60]*) and at 1765 cm ! which are
typical of an «,f-unsaturated y-lactone. This is supported
by the presence of two doublets typical of the lactonic
exocyclic methylene at 66.27 (J = 2.2) and 5.66 (J = 2.0)
in the 'H NMR spectrum of 1. Also the 'H NMR of 1
exhibited two broad singlets at $4.92 and 4.99 which were
assigned to an exocyclic methylene group (IR absorption
at 900 cm ~'). The doublet of doublet of doublets at 54.53
(J = 10,7.5, 5.0 Hz) was assigned to H-8, since irradiation
of this signal affected H-9 and converted a broad signal at
43.07 into a broad triplet assigned to H-7. Conversely,
irradiation at 43.07 (H-7) affected H-8 and collapsed the
conjugated exocyclic methylene proton signals to singlets.
The cis-lactone ring fusion was deduced from the allylic

* Contribution No. 826 from Instituto de Quimica, U.N.A.M.

coupling constants of the C-13 methylene according to
Samek’s rule [12] and the chemical shift of H-8 (§4.53)
shifted to lower field compared with that of inuviscolide
(64.33) (7) which possesses trans annelation [11]. We have
observed that in C-8 closed y-lactones, the H-8«
(equatorial) signal in cis-y-lactones has a higher chemical
shift that the H-88 (axial) signal in trans-y-lactones, for
instance tomentosin (64.67) [13] and its 8-epimer xan-
thisonin (54.24) [13]; helenalin acetate (54.90) [14] and
its 8-epimer bigelovin (64.66) [15]; ivangustin (64.86)
[16] and 8-epi-ivangustin (64.09) [11]; pleniradin acetate
(65.39) [17] and its 8-epimer gaillardin (54.48) [18].
Therefore the chemical shift of H-8 seems to be suf-
ficiently characteristic for assignment of the C-8 lactone
ring closure. The acetoxy group in 1 was placed at C-4 in
the following manner. Acid hydrolysis of 1 afforded an
elimination product characterized as zinniolide (2) [19].
Selective epoxidation of 2 with m-chloro perbenzoic acid
produced the a-cpoxide 3. Its stereochemistry was de-
duced on the reasonable assumption that the peracid
attacked from the less hindered a-face. Treatment of
epoxide 3 with boron trifluoride furnished the ketone 4
(¥ max 1740 cm ™ '), thus establishing the acetoxy group at
C-4 and the methylene group at C-10. Since the acetoxy
group undergoes in high yield bimolecular elimination
toward C-3 rather than toward C-5, as in pseudoivalin
[20], the stereochemistry of the acetoxy group is very
likely a[20]. The stereochemistry of H-1 and H-5 must be
the same as in zinniolide (2). Based on all these facts we
propose 1 as the more likely structure for 4-acetyl-8-epi-
inuviscolide.

The second compound isolated, 4a,5B-epoxy-8-epi-
inunolide (5), C,sH;00;, mp 95-98°, exhibited IR and
'HNMR features which closely resembled those of a
substance isolated from Inula species [13], to which
structure 8 has been assigned only with a different
stereochemistry at C-4, C-5 and a cis-fused lactone ring, in
spite of the chemical shift of H-8, which was markedly
different from that of inunolide [21], for which the
stereochemistry of the lactone ring was established as cis.
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The same compound with the structure 8 was also isolated
from Telekia speciosa [22] but the stereochemistry of the
4,5-epoxy group was changed without any argument.
Furthermore in a recent paper [23], the stereochemistry
of compound 8 was proposed as the same as our
compound 5, which we have previously established based
on the cyclization of §, which afforded the guaianolide
inuviscolide (7) [24]. Final confirmation of the structure
of § was achieved by epoxidation with m-chloro-
perbenzoic acid which furnished the epoxy derivative
6, which was identical with an authentic sample of
11,13-dehydroeriolin  (6), previously isolated from
Schkuhria virgata [24].

In order to eliminate structural and stereochemical
uncertainties single crystal X-ray data on 11,13-de-
hydroeriolin (6) were obtained. The solid state structure of
11,13-dehydroeriolin is depicted in Fig. 1. The torsion
angles in Table 1 demonstrate that the conformation of
the 10-membered ring is the chair—chair form
['°Ds, D!*], with crossed epoxidized double bonds,
typical of trans,trans-germacrolides. The distance between
the bond centres C1-C10 and C4-CS5 is 3.108 A. The
conformation of the lactone ring is half chair with C12
and the C7-C8 midpoint on the local two-fold axis. Bond
distances (esds 0.003-0.004 A) and angles (esds 0.2-0.3°)
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are normal, and have been deposited with the Cambridge
Crystallographic Data Centre. The two epoxides are
unsymmetrical, with C-0 distances involving the methyl-
substituted carbon atom averaging 1460 A, and those
involving the unsubstituted carbon atom averaging
1.437 A. The epoxide C-C distances average 1.473 A. C-H
distances for refined hydrogen atoms range
0.89(4)-1.08(3) A and average 0.99 i

The third compound was the inuviscolide (7) which is
an artefact originated by cyclization of § during the
purification onsilica gel, therefore it is not a constituent of
S. ovata.

EXPERIMENTAL

Aerial parts of Stevia ovata Willd were collected 5 km W of
Oaxtepec on road Cuautla—Cuernavaca, State of Morelos,
Mexico, in November, 1980. A voucher specimen Calderon no. 66
is on deposit at the National Herbarium UNAM, (MEXU).

The air-dried plant material, leaves and flowers (100 g) were
extracted 2 x with boiling petrol (3 1) and the solvent removed in
vacuo. The petrol extract (20 g) was chromatographed over 250 g
silica gel (Grace 204-325 mesh) using petrol-CHCl,, CHCI, and
CHCI;-Me,CO as cluants. Fractions eluted with petrol-CHCl,
(1:1)and CHCl, (5.15 g) were combined and rechromatographed
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Fig. 1. Stereoscopic representation of 11,13-dehydroeriolin (6).

Table 1. Selected torsion angies in 11,13-dehydroeriolin

Atoms Angle (deg) Atoms Angle (deg)
C1-C2-C3-C4 563 C9-Cl1o-Ci1-C2 1526
C2-C3-C4-C5 -852 C10-C1-C2-C3 ~109.0
C3-C4-C5-Cé6 1544 C7-C8-02-C12 ~24.1
C4-C5-C6-C7 —1263 C8-02-C12-C11 9.6
C5-C6C7-C8 781 02-C12-Ci1-C7 9.4
C6-CT-C8-C9 —89.5 Ci12-C11-C7-C8 -226
C7-C8-C9-C10 90.3 C11-C7-C8-02 274
C8-C9-C10-C1 105.4

on 120 g silica gel using CHCl;-Me,CO mixtures of increasing
polarity, to yield 14 fractions of 125 ml. Fractions 6-9 (1.68 g)
were combined and purified by prep. TLC (CHCl;,-Me,CO,9:1)
yielding 675 mg 1 and 768 mg 5. Fractions 11-13 (205 mg) were
purified by prep. TLC (CHCl,;-Me,CO, 9:1) affording 45 mg 7.

4-Acetyl-8-epi-inuviscolide (1). Colourless oil IR v;‘:cm' 1
1765, 1730,940, 900. EIMS 70 eV m/z (rel, int.y: no [M]7,230[M
- HOAC]" (39), 215 [M —~HOAc—Me]* (15), 145 (49), 119
(89), 91 (97), 79 (54), 43 [MeCO]* (100). 'H NMR (200 MHz,
CDCl,) 61.54 (3H, s, H-15), 2.01 (3H, 5, Ac), 2.50 (1H, dd, J5, o
= 13, Jg,. 95 = 10.0 Hz, H-98), 2.67 (1H, dd, J5, o, = 13, J3, op
= 5.0 Hz, H-9),3.07 (1H,m, H-7),4.53 (1H, ddd, J4, o, = 5.0Hz,
J e, 92 = 10, J 1, 5. = 7.5 Hz, H-8), 492 (1H, br 5, H-14), 499
{1H, brs, H-14'), 567 (1H, d, J = 20 Hz, H-13}, 6.27 (1H,d, J
= 22 Hz, H-13').

589 578 546 435 365
+100 +1L7 +126 +222 +289
(CHCly; ¢0.239).

Compound 2. To a soln of 350 mg of 1in 125 ml MeOH, 1 mi of
HCl was added. After usual work-up, the residue was purified by
prep. TLC (CHC1,-Me,CO, 9:1) giving 175 mg of 2 as an oil.
{adp = +107° (CHCly, ¢ 0216) reported [alfy = +140.2°
(CHCl,, ¢ 1.64) [19], IR, MS and ' H NMR spectra identical with
those previously published [19].

Epoxidation of 2. To a soln of 2 {120 mg) in CHCl, m-chloro-
perbenzoic acid (120 mg) was added and the reaction monitored
by TLC. Work-up as usual yielded 65 mg of 3 as a crystalline
compound, mp 107-109° (CHCl,—petrol). IR v SH cm = *: 1760,
1050, 1000, 950, 910; EIMS 70¢V m/z (rel. int.) 246 (M]* (9), 231
M —Me]* (8), 131 (50), 107 (44), 105 (46), 91 (100). *HNMR
{60 MHz, CDCl;) 5145 (3H, s, H-15), 4.50 (IH, ud, J = 6.5,

[a]2* =

9.0 Hz, H-8), 495 (2H, brs, H-14), 5.65 (1H,d,J = 2.0 Hz, H-13),
6.25 (1H, d, J = 2.0 Hz, H-1¥').

Reaction of 3 with BF 3'Et,0. Epoxide 3 (55 mg) was dissolved in
CsHg (30 ml) and BF;-Et;0O (0.3 ml) was added. After usual work-
up, the residue was purified by TLC (CHC1;-Me,CO,9.5:0.5)to
give 40 mg 4. Colourless oil. IR vg;“;cm": 1765, 1740, 1055.
EIMS 70 ¢V m/z (rel. int.), 246 [M]* (17), 231 [M —Me] " (5),
174 (47), 91 (100), 79 (76), 77 (82), 55 (79). '"HNMR (60 MHz,
CDClL,), 61.16 (3H, d, J = 6.5 Hz, H-15), 485 (1H, td, J =55,
8.0 Hz, H-8), 5.0 (1H, br s, H-14), 5.06 (1H, br s, H-14'}, 5.67 (1H, 4,
J =22 Hz, H-13), 6.33 (1H, d, J = 2.5 Hz, H-13').

4a,5p-Epoxy-8-epi-inunolide (5). Crystalline compound,
mp 95-98°, {a]} —6.2° (CHCl,, c0.193). IRvCH s em - 1: 1765,
1140,990, 890; EIMS 70eV m/z (rel. int.) 248 (M] * (0.5),230[M
~H,0]* (0.8), 95 (56), 81 (65), 68 {100), 43 (62). 'H NMR
(100 MHz, CDCl;) 61.15 (3H, s, H-15), 1.77 (3H, s, H-14), 2.82
(1H, m, H-7), 2.64 (1H, brd, J5 ., = 10 Hz, H-5), 4.07 (1H, ddd,
Jsp-0p =2, J1a-85 = 1.0, Jg;4 .5, = 10.5 Hz, H-8), 5.26 (1H, m,
H-1),5.62 (1H,d, J = 3.0Hz, H-13),6.28 (1H,d, J = 3.5 Hz, H-
13).

Epoxidation of compound 5. To a soln of § (76 mg) in 30 m]
Me,CO, 300 mg K,CO; and 100 mg m-chloroperbenzoic acid
were added, and the mixture allowed to react for 1.5 hr. Usual
work-up gave 44 mg 6. Identical in all respects with authentic
11,13-dehydroeriolin 6 [24].

Cyclization of compound 5. p-Toluenesulphonic acid (50 mg)
was added to a soln of 5§ (50 mg) in C.H,. Work up as usual
yiclded 30 mg 7 which was identical to inuviscolide [11],

X-Ray data for 11,13-Dehydroeriolin. A crystal of dimensions
0.24 x 0.40 x 0.64 mm was used for data collection on an Enraf-
Nonius CAD4 diffractometer equipped with MoK « radiation (4
= 0.71073 A) and a graphite monochromator. Crystal data are:
C,sH;004, M, = 264.3, orthorhombic space group P2,2,2,, a
= 6.706(1), b=13236(4), c=15273(H)A, Z=4, d
= 1.295 gcm 3, y (MoKa) = 0.87 cm " '. Data were collected by
w~20 scans of variable speed, designed to yield I = 500 (/) for all
significant reflections. One octant of data having 1° < 8 < 30°
was collected at 23°, yielding 2264 unique reflections, of which
1428 had ] >3¢(I) and were used in the refinement. Data
reduction included corrections for background, Lorentz, and
polarization effects; absorption effects were negligible.

The structure was solved by direct methods and refined by full
matrix least squares based on F with weights W = g~ *(Fo).
Nonhydrogen atoms were treated anisotropically; hydrogen
atoms were located by difference maps and refined isotropically,
except for those of methyl groups, which were included as fixed
contributions with isotropic B = 5.0A% Convergence was
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achieved with R = 0.045, Rw = 0.056, and maximum residual
density 0.19 eA =3 for 228 variables.
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